# UNIQUENESS PROBLEMS OF DIFFERENCE-DIFFERENTIAL POLYNOMIALS SHARING ONE VALUE OF ENTIRE FUNCTIONS 

HARINA P. WAGHAMORE AND RAMYA MALIGI


#### Abstract

In this paper, we study the uniqueness problems of difference-differential polynomials of entire functions $f$ and $g$ sharing one value with counting multiplicity (CM). The results extend and improve the results of Renukadevi S. Dyavanal and Ashwini M. Hattikal [3].


## 1. Introduction and main results

A meromorphic function $f(z)$ means meromorphic in the complex plane. If no poles occur, then $f(z)$ reduces to an entire function. We assume that the reader is familiar with the notations and the basic results of Nevanlinna theory of meromorphic functions [7], [14] and [16]. For any nonconstant meromorphic function $f(z)$, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite linear measure.

Let $a$ be a finite complex plane and $k$ be a positive integer. We denote by $N_{k)}\left(r, \frac{1}{(f-a)}\right)$ the counting function for the zeros of $f(z)-a$ with multiplicity $\leq k$, and by $\bar{N}_{k)}\left(r, \frac{1}{(f-a)}\right)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{(f-a)}\right)$ be the counting function for the zeros of $f(z)-a$ with multiplicity $\geq k$ and $\bar{N}_{(k}\left(r, \frac{1}{(f-a)}\right)$ be the corresponding one for which multiplicity is not counted. Moreover, we set

$$
N_{k}\left(r, \frac{1}{(f-a)}\right)=\bar{N}\left(r, \frac{1}{(f-a)}\right)+\bar{N}_{(2}\left(r, \frac{1}{(f-a)}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{(f-a)}\right) .
$$

In the same way, we can define $N_{k}(r, f)$.

[^0]This paper was typeset using $\mathcal{A} \mathcal{M} \mathcal{S}$ - ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Let $f$ and $g$ be non-constant meromorphic functions and $a$ be a complex number. We say $f$ and $g$ share the value $a$ CM, if $f-a$ and $g-a$ have the same zeros with the same multiplicities.

In 1993, Wang and Fang [12, 13] proved the following theorem for transcendental entire functions.

Theorem A. Let $f(z)$ be a transcendental entire function. $n$ and $k$ be two positive integers with $n \geq k+1$, then $\left[f^{n}\right]^{(k)}-1$ has infinitely many zeros.

In 2002, M. L. Fang [4] proved the unicity theorem corresponding to the above result.

Theorem B. Let $f$ and $g$ be two non-constant entire functions, and let $n \geq 11$ be a positive integer with $n>2 k+4$. If $\left[f^{n}\right]^{(k)}$ and $\left[g^{n}\right]^{(k)}$ share 1 CM , then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where $c_{1}, c_{2}$ and $c$ are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f \equiv t g$ for a constant $t$ such that $t^{n}=1$.

In 2008, X. Y. Zhang, J. F. Chen and W. C. Lin [18] proved the following results on uniqueness of two polynomials sharing a common value.

Theorem C. Let $f$ be a transcendental entire function, let $n, k$ and $m$ be positive integers with $n \geq k+2$, and $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{m} z^{m}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{m}$ are complex constants. Then $\left[f^{n} P(f)\right]^{(k)}=1$ has infinitely many solutions.

Theorem D. Let $f$ and $g$ be two non-constant entire functions. Let $n, k$ and $m$ be three positive integers with $n \geq 3 m+2 k+5$, and $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+$ $\ldots+a_{1} z+a_{0}$ or $P(z) \equiv c_{0}$, where $a_{0}(\neq 0), a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}, a_{m}(\neq 0), c_{0}(\neq 0)$ are complex constants. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share 1 CM , then
(1) when $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, either $f(z) \equiv \operatorname{tg}(z)$ for a constant $t$ such that $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n), a_{m-i}(\neq 0)$ for some $i=0,1,2, \ldots, m$, or $f$ and $g$ satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\ldots+a_{0}\right)-w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\ldots+a_{0}\right)$ (2) when $P(z) \equiv c_{0}$, either $f(z)=\frac{c_{1}}{\sqrt[n]{c_{0} e^{c z}}}, g(z)=\frac{c_{2}}{\sqrt[n]{c_{0} e^{-c z}}}$, where $c_{1}, c_{2}$ and $c$ are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f \equiv t g$ for a constant $t$ such that $t^{n}=1$.

In 2012, L. Kai, L. Xin-ling, C. Ting-bin [8] considered Theorem B for differencedifferential polynomials and proved the following results.

Theorem E. Let $f(z)$ be a transcendental entire function of finite order. If $n \geq k+2$, then the difference-differential polynomial $\left[f^{n}(z) f(z+c)\right]^{(k)}-\alpha(z)$ has infinitely many zeros.

Theorem F. Let $f$ and $g$ be transcendental entire functions of finite order, $n \geq 2 k+6$ and $c$ is a non-zero complex constant. If $\left[f^{n}(z) f(z+c)\right]^{(k)}$ and $\left[g^{n}(z) g(z+c)\right]^{(k)}$ share the value 1 CM , then either $f(z)=c_{1} e^{C z}, g(z)=c_{2} e^{-C z}$, where $c_{1}, c_{2}$ and $C$ are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n+1}((n+1) C)^{2 k}=1$, or $f \equiv t g$ for a constant $t$ such that $t^{n+1}=1$.

In the same direction J. Zhang [17] investigated the value distribution and uniqueness of difference polynomials of entire functions and obtained the following results.

Theorem G. Let $f(z)$ be a transcendental entire function of finite order, and $\alpha(z)$ be a small function with respect to $f(z)$. Suppose that $c$ is a non-zero complex constant. If $n \geq 2$, then $f^{n}(z)(f(z)-1) f(z+c)-\alpha(z)$ has infinitely many zeros.

Theorem H. Let $f$ and $g$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that $c$ is a non-zero constant and $n$ is an integer. If $n \geq 7$, then $f^{n}(z)(f(z)-1) f(z+c)$ and $g^{n}(z)(g(z)-1) g(z+c)$ share $\alpha(z) \mathrm{CM}$, then $f(z) \equiv g(z)$.

In 2014, R. S. Dyavanal and R. V. Desai [2] extended the results of J. Zhang [17] and proved the following results.

Theorem I. Let $f(z)$ be a transcendental entire function of finite order, and $\alpha(z)$ be a small function with respect to $f(z)$. Suppose that $c$ is a non-zero complex constant and $n$ is an integer. If $n \geq 2, k_{1} \geq 1$ then $f^{n}(z)(f(z)-1)^{k_{1}} f(z+c)-\alpha(z)$ has infinitely many zeros.

Theorem J. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that $c$ is a non-zero complex constant, $k_{1} \geq 1, n \geq k_{1}+6$. If $f^{n}(z)(f(z)-1)^{k_{1}} f(z+c)$ and $g^{n}(z)(g(z)-1)^{k_{1}} g(z+c)$ share $\alpha(z) \mathrm{CM}$, then $f(z) \equiv \operatorname{tg}(z)$, where $t^{k_{1}}=1$.

Recently, Renukadevi S. Dyavanal and Ashwini M. Hattikal [3] considered Theorem C and Theorem D to difference-differential polynomials and extends the above theorems as follows.

Theorem K. Let $f$ be a transcendental entire function. $n, k$ and $m$ be positive integers with $n \geq k+2$ and $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}, a_{m}$ are complex constants and $\alpha(z)$ be a small function with respect to $f(z)$. Then $\left[f^{n} P(f) f(z+c)\right]^{(k)}-\alpha(z)$ has infinitely many zeros.

Theorem L. Let $f$ and $g$ be two non-constant entire functions of finite order. Let $n, k$ and $m$ be three positive integers with $n \geq m+2 k+6,{ }^{\prime} c^{\prime}$ is a nonzero complex constant and $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$ or $P(z) \equiv$ $c_{0}$, where $a_{0}(\neq 0), a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}, a_{m}(\neq 0), c_{0}(\neq 0)$ are complex constants. If $\left[f^{n}(z) P(f) f(z+c)\right]^{(k)}$ and $\left[g^{n}(z) P(g) g(z+c)\right]^{(k)}$ share 1 CM , then
(1) when $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, we get $f(z) \equiv \operatorname{tg}(z)$ for a constant $t$ such that $t^{d}=1$, where $d=G C D(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1)$ and $i=0,1,2, \ldots, m$.
(2) when $P(z) \equiv c_{0}$, either $f(z)=\frac{c_{1} e^{C z}}{\sqrt[n]{c_{0}}}, g(z)=\frac{c_{2} e^{-C z}}{\sqrt[n]{c_{0}}}$, where $c_{1}, c_{2}, c_{0}$ and $C$ are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n+1}((n+1) C)^{2 k}=\left(\sqrt[n]{c_{0}}\right)^{2}$, or $f \equiv t g$ for a constant $t$ such that $t^{n+1}=1$.

In this paper, we assume $c_{j} \in \mathbb{C} \backslash\{0\}(j=1, \ldots, d)$ are distinct constants, $n, m, d, s_{j}(j=1, \ldots, d) \in N_{+} . \lambda=\sum_{j=1}^{d} s_{j}=s_{1}+\ldots+s_{d}$. Let

$$
\begin{equation*}
F(z)=f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}, G(z)=g^{n}(z) P(g) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} \tag{1.1}
\end{equation*}
$$

Where $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{0}$ is a nonzero polynomial of degree $m$, let $\Gamma_{0}=m_{1}+m_{2}$, where $m_{1}$ is the number of the simple zero of $P(z)$ and $m_{2}$ is the number of multiple zeros of $P(z)$.

We consider the uniqueness problems of difference-differential polynomials $F^{(k)}(z)$ and obtained the following results, which improves the Theorems K and L.

Theorem 1.1. Let $f$ be a transcendental meromorphic (resp. entire) function. $n, k$ and $m$ be positive integers with $n \geq k+3+\Gamma_{0}-m$ (resp. $n \geq k+2+\Gamma_{0}-m$ ) and $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}, a_{m}$
are complex constants and $\alpha(z)$ be a small function with respect to $f(z)$. Then $\left[f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}-\alpha(z)$ has infinitely many zeros.
Remark 1.1. If $\Gamma_{0}=m=m_{1}+m_{2}, \lambda=1$ in Theorem 1.1, then Theorem 1.1 reduces to Theorem K.

Theorem 1.2. Let $f$ and $g$ be two non-constant entire functions of finite order. $F(z)$ and $G(z)$ are stated as in (1.1). Suppose that $n \geq 2 k+2 \Gamma_{0}+\lambda-m+3$. If $F^{(k)}$ and $G^{(k)}$ share 1 CM , then
(1) when $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1}(z)+a_{0}$, either $f \equiv t g$ for a constant $t$ such that $t^{l}=1$, where $l=G C D\left\{n+\lambda_{0}+\lambda, n+\lambda_{1}+\lambda, \ldots, n+\lambda_{m}+\lambda\right\}$ and

$$
\lambda_{i}=\left\{\begin{array}{ll}
i, & a_{i} \neq 0 \\
m, & a_{i}=0
\end{array} \quad i=0,1, \ldots, m,\right.
$$

or $f$ and $g$ satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n} P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n} P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}} .
$$

(2) when $P(z) \equiv c_{0}$ either $f(z)=\frac{c_{1} e^{z}}{\sqrt[n]{c_{0}}}, g(z)=\frac{c_{2} e^{-C z}}{\sqrt[n]{c_{0}}}$, where $c_{1}, c_{2}, c_{0}$ and $C$ are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n+1}((n+\lambda) C)^{2 k}=\left(\sqrt[n]{c_{0}}\right)^{2 \lambda}$, or $f \equiv t g$ for a constant $t$ such that $t^{n+\lambda}=1$.

Remark 1.2. If $\Gamma_{0}=m=m_{1}+m_{2}, \lambda=1$ in Theorem 1.2, then Theorem 1.2 improves the Theorem L.

## 2. Some Lemmas

For the proof of our main results, we need the following lemmas.
Lemma 2.1 ([1]). Let $f(z)$ be a transcendental meromorphic function of finite order, then

$$
T(r, f(z+c))=T(r, f)+S(r, f)
$$

Lemma 2.2 ([16]). Let $f(z)$ be a non-constant meromorphic function, and $a_{n}(\neq$ 0 ), $a_{n-1}, \ldots, a_{0}$ be small functions with respect to $f$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f) .
$$

Lemma 2.3 ([6]). Let $f$ be a transcendental meromorphic function of finite order. Then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=S(r, f)
$$

Lemma 2.4 ([7, 14]). Let $f(z)$ be a non-constant meromorphic function and $a_{1}(z), a_{2}(z)$ be two meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f), i=1,2$. Then

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)+S(r, f) .
$$

Lemma 2.5 ([16]). Let $f(z)$ and $g(z)$ be two transcendental entire functions, and $k$ be a positive integer. Then

$$
T\left(r, f^{(k)}\right) \leq T(r, f)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.6 ([[1], [5]]). Let $f(z)$ be a meromorphic function of finite order and $c$ is a non-zero complex constant. Then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=S(r, f) .
$$

Lemma 2.7 ([9], Lemma 2.3). Let $f(z)$ be a non-constant meromorphic function and $p, k$ be positive integers. Then

$$
\begin{equation*}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f), \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.2}
\end{equation*}
$$

Lemma 2.8. Let $f(z)$ be a transcendental entire function of finite order and let $F^{*}=f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}$. Then

$$
T\left(r, F^{*}\right)=(n+m+\lambda) T(r, f)+S(r, f) .
$$

Proof. Since $f$ is a transcendental entire function and also from Lemmas 2.2, 2.3 and 2.6 , we obtain

$$
\begin{aligned}
(n+m+\lambda) T(r, f)+S(r, f) & =T\left(r, f^{n+\lambda}(z) P(f)\right) \leq m\left(r, f^{n+\lambda}(z) P(f)\right)+S(r, f) \\
& \leq m\left(r, \frac{f^{\lambda}(z) F^{*}}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right)+S(r, f) \\
& \leq m\left(r, F^{*}\right)+S(r, f) \\
& \leq T\left(r, F^{*}\right)+S(r, f) .
\end{aligned}
$$

On the other hand, using Lemma 2.1 and $f$ is a transcendental entire function of finite order, we have

$$
\begin{aligned}
T\left(r, F^{*}\right) & \leq n T(r, f)+m T(r, f)+\lambda T(r, f(z+c))+S(r, f) \\
& \leq(n+m+\lambda) T(r, f)+S(r, f)
\end{aligned}
$$

Hence we get Lemma 2.8.

## 3. Proof of the Theorems

Proof of Theorem 1.1. Denote $(F(z))^{(k)}=\left[f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $F=f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}$. From Lemma 2.8, $F$ is not a constant. Next, we consider the following two cases.

Case 1. If $f$ is a transcendental meromorphic function. Suppose that $F(z)^{(k)}-\alpha(z)$ has only finitely many zeros, then from the second fundamental theorem for three values and (2.1) of Lemma 2.7, we get

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, 0, F^{(k)}\right)+\bar{N}\left(r, 0, F^{(k)}-\alpha(z)\right)+S\left(r, F^{(k)}\right) \\
& \leq \bar{N}(r, f)+N_{1}\left(r, 0, F^{(k)}\right)+\bar{N}\left(r, 0, F^{(k)}-\alpha(z)\right)+S\left(r, F^{(k)}\right) \\
& \leq \bar{N}(r, f)+T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}(r, 0, F)+S(r, F)+S\left(r, F^{(k)}\right)
\end{aligned}
$$

$$
\begin{equation*}
T(r, F) \leq \bar{N}(r, f)+N_{k+1}(r, 0, F)+S(r, f) \tag{3.1}
\end{equation*}
$$

From Lemma 2.8 and (3.1), it implies that

$$
\begin{aligned}
(n+m+\lambda) T(r, f)+S(r, f) & =T(r, F) \leq N_{k+1}(r, 0, F)+\bar{N}(r, f)+S(r, f) \\
& \leq(k+1) \bar{N}(r, 0, f)+N(r, 0, P(f))+N\left(r, 0, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right) \\
& +\bar{N}(r, f)+S(r, f) \\
& \leq\left(k+2+\Gamma_{0}+\lambda\right) T(r, f)+S(r, f)
\end{aligned}
$$

Which is a contradiction to $n \geq k+3+\Gamma_{0}-m$. Hence $F(z)^{(k)}-\alpha(z)$ has infinitely many zeros.

Case 2. If $f$ is a transcendental entire function. Suppose that $F(z)^{(k)}-\alpha(z)$ has only finitely many zeros. By using the same argument as in case 1 , we get

$$
(n+m+\lambda) T(r, f) \leq\left(k+1+\Gamma_{0}+\lambda\right) T(r, f)+S(r, f)
$$

which is a contradiction to $n \geq k+2+\Gamma_{0}-m$. Hence $F(z)^{(k)}-\alpha(z)$ has infinitely many zeros.

## Proof of Theorem 1.2.

(1) If $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$.

Then by assumption and Theorem 1.1 we know that either both $f$ and $g$ are transcendental entire functions or both $f$ and $g$ are polynomials.

First, we consider the case when $f$ and $g$ are transcendental entire functions.
By Lemma 2.5, we have

$$
T\left(r, F^{(k)}\right) \leq T\left(r, f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+S\left(r, f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)
$$

By Lemma 2.8, we get $S\left(r, F^{(k)}\right)=S(r, f)$, similarly $S\left(r, G^{(k)}\right)=S(r, g)$.
Since $f, g$ are two transcendental entire functions with finite order, $F^{(k)}$ and $G^{(k)}$ share 1 CM , there exists a nonzero constant $c$ such that

$$
\frac{F^{(k)}-1}{G^{(k)}-1}=c .
$$

Rewriting the above equation, we have

$$
c G^{(k)}=F^{(k)}-1+c .
$$

Assume that $c \neq 1$. By the second fundamental theorem and Lemma 2.7, we get

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-1+c}\right)+S\left(r, F^{(k)}\right) \\
& \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S(r, f) \\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S(r, f) \\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

So

$$
T(r, F) \leq N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g)
$$

By the definitions of $F, G$ and Lemma 2.8, we have

$$
(n+m+\lambda) T(r, f) \leq\left(k+1+\Gamma_{0}+\lambda\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g)
$$

Similarly, we obtain

$$
(n+m+\lambda) T(r, g) \leq\left(k+1+\Gamma_{0}+\lambda\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g)
$$

Therefore
$(n+m+\lambda)[T(r, f)+T(r, g)] \leq 2\left(k+1+\Gamma_{0}+\lambda\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g)$,
which contradicts with the assumption that $n \geq 2 k+2 \Gamma_{0}+\lambda-m+3$. Hence $F^{(k)} \equiv G^{(k)}$.

By $(F(z))^{(k)}=(G(z))^{(k)}$, we get $F(z)=G(z)+Q(z)$, where $Q(z)$ is a polynomial of degree atmost $k-1$. If $Q(z) \not \equiv 0$, then

$$
\frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}{Q(z)}=\frac{g^{n}(z) P(g) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}}{Q(z)}+1
$$

By the second fundamental theorem and Lemma 2.8, we deduce that

$$
\begin{aligned}
(n+m+\lambda) T(r, f) & =T\left(r, \frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}{Q(z)}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}{Q(z)}\right)+\bar{N}\left(r, \frac{Q(z)}{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right) \\
& +\bar{N}\left(r, \frac{Q(z)}{g^{n}(z) P(g) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P(f)}\right)+\bar{N}\left(\begin{array}{l}
\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}
\end{array}\right)+\bar{N}\left(r, \frac{1}{g}\right) \\
& +\bar{N}\left(r, \frac{1}{P(g)}\right)+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}}\right)+S(r, f)+S(r, g) \\
& \leq\left(1+\Gamma_{0}+d\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g) .
\end{aligned}
$$

Similarly, we obtain

$$
(n+m+\lambda) T(r, g) \leq\left(1+\Gamma_{0}+d\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g) .
$$

So
$(n+m+\lambda)[T(r, f)+T(r, g)] \leq 2\left(1+\Gamma_{0}+d\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g)$.
Which contradicts with the assumption that $n \geq 2 k+2 \Gamma_{0}+\lambda-m+3$. Hence $Q(z) \equiv 0$. Then

$$
\begin{equation*}
f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}=g^{n}(z) P(g) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} . \tag{3.2}
\end{equation*}
$$

Set $h=\frac{f}{g}$. If $h$ is not a constant, from (3.2), we find that $f$ and $g$ satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n} P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n} P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}}
$$

If $h$ is a constant. Substituting $f=g h$ into (3.2), we get

$$
\begin{equation*}
\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\left[a_{m} g^{n+m}\left(h^{n+m+\lambda}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m+\lambda-1}-1\right)+\ldots+a_{0} g^{n}\left(h^{n+\lambda}-1\right)\right] \equiv 0 \tag{3.3}
\end{equation*}
$$

where $a_{m}(\neq 0), a_{m-1}, \ldots a_{0}$ are constants.
Since $g$ is transcendental entire function, we have $\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} \not \equiv 0$. Then, from (3.3), we have
(3.4) $a_{m} g^{n+m}\left(h^{n+m+\lambda}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m+\lambda-1}-1\right)+\ldots+a_{0} g^{n}\left(h^{n+\lambda}-1\right) \equiv 0$.

If $a_{m}(\neq 0)$ and $a_{m-1}=a_{m-2}=\ldots=a_{0}=0$, then from (3.4) and $g$ is transcendental function, we get $h^{n+m+\lambda}=1$.

If $a_{m}(\neq 0)$ and there exists $a_{i} \neq 0(i \in\{0,1,2, \ldots, m-1\})$. Suppose that $h^{n+m+\lambda} \neq$ 1 , from (3.4), we have $T(r, g)=S(r, g)$ which is contradiction with transcendental function $g$. Then $h^{n+m+\lambda}=1$. Similar to this discussion, we can see that $h^{n+j+\lambda}=1$ when $a_{j} \neq 0$ for some $j=0,1,2, \ldots, m$.

Thus, we have $f \equiv t g$ for a constant $t$ such that $t^{l}=1$, where $l=G C D\left\{n+\lambda_{0}+\right.$ $\left.\lambda, n+\lambda_{1}+\lambda, \ldots, n+\lambda_{m}+\lambda\right\}$ and $\lambda_{i}(i=0,1,2, \ldots, m)$ is stated as in Theorem 1.2.

Now we consider the case when $f$ and $g$ are two polynomials.
$\operatorname{By}\left[f^{n}(z) P(f) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $\left[g^{n}(z) P(g) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ share 1 CM, we have
$\left[f^{n}(z)\left(a_{m} f^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}-1=\beta\left[g^{n}(z)\left(a_{m} g^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}-1$
where $\beta$ is a non-zero constant. Let $\operatorname{deg} f=l$, then by (3.5) we know that $\operatorname{deg} g=l$.
Differentiating the two sides of (3.5), we get

$$
\begin{equation*}
f^{n-k-\lambda}(z) q_{1}(z)=g^{n-k-\lambda}(z) q_{2}(z) \tag{3.6}
\end{equation*}
$$

where $q_{1}(z), q_{2}(z)$ are two polynomials with $\operatorname{deg} q_{1}(z)=\operatorname{deg} q_{2}(z)=(m+k+2 \lambda) l-$ $(k+1)$. By $n \geq 2 k+2 \Gamma_{0}+\lambda-m+3$, we get $\operatorname{deg} f^{n-k-\lambda}(z)=(n-k-\lambda) l>\operatorname{deg} q_{2}(z)$. Thus, by (3.6) we know that there exists $z_{0}$ such that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$.

Hence, by (3.5) and $f\left(z_{0}\right)=g\left(z_{0}\right)=0$, we deduce that $\beta=1$, that is,
$\left[f^{n}(z)\left(a_{m} f^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}=\left[g^{n}(z)\left(a_{m} g^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$
Thus, we have
$f^{n}(z)\left(a_{m} f^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}-g^{n}(z)\left(a_{m} g^{m}+\ldots+a_{0}\right) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}=Q(z)$
where $Q(z)$ is a polynomial of degree atmost $k-1$. Next we prove $Q(z) \equiv 0$. By rewriting (3.7) as

$$
\begin{equation*}
f^{n-k}(z) p_{1}(z)=g^{n-k}(z) p_{2}(z) . \tag{3.9}
\end{equation*}
$$

Where $p_{1}(z), p_{2}(z)$ are two polynomials with $\operatorname{deg} p_{1}(z)=\operatorname{deg} p_{2}(z)=(m+k+\lambda) l-k$ and $\operatorname{deg} f(z)=l$.
Hence total number of common zeros of $f^{n-k}(z)$ and $g^{n-k}(z)$ is atleast $k$. Thus, by (3.8) we deduce that $Q(z) \equiv 0$, that is
$f^{n}(z)\left(a_{m} f^{m}+a_{m-1} f^{m-1} \ldots+a_{0}\right) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}=g^{n}(z)\left(a_{m} g^{m}+a_{m-1} g^{m-1} \ldots+a_{0}\right) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}$.
Next, similar to the argument of (3.2), we get $f(z) \equiv \operatorname{tg}(z)$ for a constant $t$ such that $t^{l}=1$, where $l=G C D\left\{n+\lambda_{0}+\lambda, n+\lambda_{1}+\lambda, \ldots, n+\lambda_{m}+\lambda\right\}$ and $\lambda_{i}(i=0,1,2, \ldots, m)$ is stated as in Theorem 1.2.
(2) If $P(z) \equiv c_{0}$

By the assumption and Theorem 1.1, we know that either both $f$ and $g$ are transcendental entire functions or both $f$ and $g$ are polynomials.

First, we consider the case when both $f$ and $g$ are transcendental entire functions.
Let

$$
F=f^{n}(z) c_{0} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}, G=g^{n}(z) c_{0} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}
$$

By the Theorem F and $n \geq 2 k+2 \Gamma_{0}+\lambda-m+3$, we obtain either $f(z)=\frac{c_{1} e^{C z}}{\sqrt[n]{c_{0}}}, g(z)=$ $\frac{c_{2} e^{-C z}}{\sqrt[n]{c_{0}}}$, where $c_{1}, c_{2}, c_{0}$ and $C$ are constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n+1}((n+\lambda) C)^{2 k}=$ $\left(\sqrt[n]{c_{0}}\right)^{2 \lambda}$, or $f \equiv t g$ for a constant $t$ such that $t^{n+\lambda}=1$.

Now we consider the case when both $f$ and $g$ are two polynomials.
By $\left[f^{n}(z) c_{0} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $\left[g^{n}(z) c_{0} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ share 1 CM , we have

$$
\begin{equation*}
\left[f^{n}(z) c_{0} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}-1=\gamma\left[\left[g^{n}(z) c_{0} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}-1\right] \tag{3.11}
\end{equation*}
$$

Where $\gamma$ is a non-zero constant. Let $\operatorname{deg} f(z)=l$, then by (3.11) we know that $\operatorname{deg} g(z)=l$. Differentiating the two sides of (3.11), we get

$$
\begin{equation*}
f^{n-k-\lambda}(z) q_{3}(z)=g^{n-k-\lambda}(z) q_{4}(z) \tag{3.12}
\end{equation*}
$$

where $q_{3}(z), q_{4}(z)$ are two polynomials with $\operatorname{deg} q_{3}(z)=\operatorname{deg} q_{4}(z)=(k+2 \lambda) l-(k+$ 1). By $n \geq 2 k+4$, we get $\operatorname{deg} f^{n-k-\lambda}(z)=(n-k-\lambda) l>\operatorname{deg} q_{4}(z)$.

Thus, by (3.12) we know that there exists $z_{0}$ such that $f\left(z_{0}\right)=g\left(z_{0}\right)=0$.
Hence, by (3.11) and $f\left(z_{0}\right)=g\left(z_{0}\right)=0$, we deduce that $\gamma=1$, that is,

$$
\begin{equation*}
\left[f^{n}(z) c_{0} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}=\left[g^{n}(z) c_{0} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)} \tag{3.13}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
f^{n}(z) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}-g^{n}(z) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}=Q_{1}(z) \tag{3.14}
\end{equation*}
$$

where $Q_{1}(z)$ is a polynomial of degree atmost $k-1$. Next we prove $Q_{1}(z) \equiv 0$. By rewriting (3.13) as

$$
\begin{equation*}
f^{n-k}(z) p_{3}(z)=g^{n-k}(z) p_{4}(z) \tag{3.15}
\end{equation*}
$$

where $p_{3}(z), p_{4}(z)$ are two polynomials with $\operatorname{deg} p_{3}(z)=\operatorname{deg} p_{4}(z)=(k+\lambda) l-k$ and $\operatorname{deg} f(z)=l$.
Hence total number of common zeros of $f^{n-k}(z)$ and $g^{n-k}(z)$ is atleast $k$.
Thus, by (3.14) we deduce that $Q_{1}(z) \equiv 0$, that is,

$$
\begin{equation*}
f^{n}(z) \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}=g^{n}(z) \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} \tag{3.16}
\end{equation*}
$$

Let $h(z)=\frac{f(z)}{g(z)}$ and $h(z+c)=\frac{f(z+c)}{g(z+c)}$ then

$$
(g h)^{n} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}} h\left(z+c_{j}\right)^{s_{j}}=g^{n} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}
$$

Hence $f=t g$ where $(t g)^{n} \prod_{j=1}^{d} t\left(z+c_{j}\right)^{s_{j}} g\left(z+c_{j}\right)^{s_{j}}=g^{n} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}$

$$
\Rightarrow t^{n+\lambda}=1 .
$$

## References

[1] Chiang, Yik-Man; Feng, Shao-Ji. On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16 (2008), no. 1, 105-129.
[2] Dyavanal, R. S.; Desai, R. V. Uniqueness of difference polynomials of entire functions, Appl. Math. Sci. 8 (2014), 3419-3424.
[3] Dyavanal, Renukadevi S.; Ashwini, Hattikal M. Uniqueness of difference-differential polynomials of entire functions sharing one value, Tamkang Journal of Mathematics. 47 (2016), 193-206.
[4] Fang, Ming-Liang. Uniqueness and value-sharing of entire functions. Comput. Math. Appl. 44 (2002), no. 5-6, 823-831.
[5] Halburd, R. G.; Korhonen, R. J. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[6] Halburd, R. G.; Korhonen, R. J. Meromorphic solutions of difference equations, integrability and the discrete Painleve equations. J. Phys. A 40 (2007), no. 6, 1-38.
[7] Hayman, W. K. Meromorphic functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[8] Liu, Kai; Liu, Xin-ling; Cao, Ting-bin. Some results on zeros and uniqueness of differencedifferential polynomials. Appl. Math. J. Chinese Univ. Ser. B 27 (2012), no. 1, 94-104.
[9] Lahiri, Indrajit; Sarkar, Arindam. Uniqueness of a meromorphic function and its derivative. JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 20, 9 pp . (electronic).
[10] Laine, Ilpo; Yang, Chung-Chun. Value distribution of difference polynomials. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151.
[11] Liu, Kai; Yang, Lian-Zhong. Value distribution of the difference operator. Arch. Math. (Basel) 92 (2009), no. 3, 270-278.
[12] Wang, Yao Fei. On Mues conjecture and Picard values. Sci. China Ser. A 36 (1993), no. 1, 28-35.
[13] Wang, Yuefei; Fang, Mingliang. Picard values and normal families of meromorphic functions with multiple zeros. Acta Math. Sinica (N.S.) 14 (1998), no. 1, 17-26.
[14] Yang, Lo. Value distribution theory. Translated and revised from the 1982 Chinese original. Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993.
[15] Yang, Chung-Chun; Hua, Xinhou. Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[16] Yang, Chung-Chun; Yi, Hong-Xun. Uniqueness theory of meromorphic functions. Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
[17] Zhang, Jilong. Value distribution and shared sets of differences of meromorphic functions. J. Math. Anal. Appl. 367 (2010), no. 2, 401-408.
[18] Zhang, Xiao-Yu; Chen, Jun-Fan; Lin, Wei-Chuan. Entire or meromorphic functions sharing one value. Comput. Math. Appl. 56 (2008), no. 7, 1876-1883.
(HARINA P. WAGHAMORE) Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056, INDIA

E-mail address: [harinapw@gmail.com](mailto:harinapw@gmail.com)
(RAMYA MALIGI) Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056, INDIA

E-mail address: [ramyamalgi@gmail.com](mailto:ramyamalgi@gmail.com)


[^0]:    2000 Mathematics Subject Classification. Primary 30D35.
    Key words and phrases. uniqueness, entire function, meromorphic function, difference-differential polynomial, finite order.

