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UNIQUENESS PROBLEMS OF DIFFERENCE-DIFFERENTIAL
POLYNOMIALS SHARING ONE VALUE OF ENTIRE
FUNCTIONS

HARINA P. WAGHAMORE AND RAMYA MALIGI

ABSTRACT. In this paper, we study the uniqueness problems of difference-differential
polynomials of entire functions f and g sharing one value with counting multiplic-
ity (CM). The results extend and improve the results of Renukadevi S. Dyavanal
and Ashwini M. Hattikal [3].

1. Introduction and main results

A meromorphic function f(z) means meromorphic in the complex plane. If no
poles occur, then f(z) reduces to an entire function. We assume that the reader is
familiar with the notations and the basic results of Nevanlinna theory of meromor-
phic functions [7], [14] and [16]. For any nonconstant meromorphic function f(z),
we denote by S(r, f) any quantity satisfying S(r, f) = o(T'(r, f)) as r — oo outside
of a possible exceptional set of finite linear measure.

Let a be a finite complex plane and k be a positive integer. We denote by
Ny (7", ﬁ) the counting function for the zeros of f(z) — a with multiplicity < k,
and by Nk) (r, (i_a)) the corresponding one for which multiplicity is not counted.
Let N (7’, (flfa)) be the counting function for the zeros of f(z) — a with multiplic-
ity > k and N(k <r, ﬁ) be the corresponding one for which multiplicity is not

counted. Moreover, we set

M <ﬁ> ﬂ(ﬁ) e ( (fia)> et N < (fia))

In the same way, we can define Ni(r, f).
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Let f and g be non-constant meromorphic functions and a be a complex number.
We say f and g share the value a CM, if f — a and g — a have the same zeros with

the same multiplicities.

In 1993, Wang and Fang [12, 13] proved the following theorem for transcendental

entire functions.

Theorem A. Let f(z) be a transcendental entire function. n and k be two positive

integers with n > k + 1, then [f"]®) — 1 has infinitely many zeros.

In 2002, M. L. Fang [4] proved the unicity theorem corresponding to the above

result.

Theorem B. Let f and g be two non-constant entire functions, and let n > 11
be a positive integer with n > 2k + 4. If [f"]®) and [¢"]*®) share 1 CM, then

—Cz

either f(z) = c1e%, g(z) = cae™%*, where ¢, ¢o and ¢ are three constants satisfying

(—=1)¥(c1e2)™(ne)?* = 1, or f = tg for a constant ¢ such that t" = 1.

In 2008, X. Y. Zhang, J. F. Chen and W. C. Lin [18] proved the following results

on uniqueness of two polynomials sharing a common value.

Theorem C. Let f be a transcendental entire function, let n, & and m be positive
integers with n > k+2, and P(2) = ag+a12-+a22>+...+a, 2™, where ag, a1, ag, ..., am

are complex constants. Then [f"P(f)]*®) =1 has infinitely many solutions.

Theorem D. Let f and g be two non-constant entire functions. Let n,k and m
be three positive integers with n > 3m + 2k + 5, and P(2) = a4 2™ + am_12"" +
.. + a1z + ag or P(2) = ¢g, where ag(# 0), a1,a2,a3, ..., @m—1, am(# 0), co(£ 0) are
complex constants. If [f*P(f)]*) and [¢"P(g)]*) share 1 CM, then

(1) when P(2) = amz™ + am-12""" + ... + a1z + ao, either f(z) = tg(z) for a
constant ¢ such that t? = 1, where d = (n +m,....,n+m —4,...,n), am_;(# 0) for
some i = 0,1,2,...,m, or f and g satisfy the algebraic equation R(f, g) = 0, where
R(w1, wa) = wi(amwi* + am,yw{"_l + ...+ ap) — wi{amwy + am,lw;”_l +...+ag)
(2) when P(z) = ¢, either f(z) = ﬁ, 9(2) = ===, where ¢, ¢ and c are
constants satisfying (—1)*(cico)?(nc)?* = 1, or f = tg for a constant ¢ such that

" =1.
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In 2012, L. Kai, L. Xin-ling, C. Ting-bin [8] considered Theorem B for difference-

differential polynomials and proved the following results.

Theorem E. Let f(z) be a transcendental entire function of finite order. If n > k+2,
then the difference-differential polynomial [f"(2)f(z + ¢)]*) — a(z) has infinitely

many Zzeros.

Theorem F. Let f and g be transcendental entire functions of finite order, n > 2k+6
and c¢ is a non-zero complex constant. If [f"(2)f(z + ¢)]®) and [¢"(2)g(z + ¢)]*)
share the value 1 CM, then either f(z) = ¢1e“?, g(z) = coe~©?, where ¢1, ¢y and C
are constants satisfying (—1)*(cic2)" ™ ((n +1)C)?* =1, or f = tg for a constant ¢

such that "t = 1.

In the same direction J. Zhang [17] investigated the value distribution and unique-

ness of difference polynomials of entire functions and obtained the following results.

Theorem G. Let f(z) be a transcendental entire function of finite order, and a(z)
be a small function with respect to f(z). Suppose that ¢ is a non-zero complex con-

stant. If n > 2, then f™(2)(f(z) — 1)f(z 4+ ¢) — a(2) has infinitely many zeros.

Theorem H. Let f and g be two transcendental entire functions of finite order,
and a(z) be a small function with respect to both f(z) and g(z). Suppose that c is
a non-zero constant and n is an integer. If n > 7, then f™(z)(f(z) — 1)f(z + ¢) and

9"(2)(g(z) — 1)g(z + ¢) share a(z) CM, then f(z) = g(z).

In 2014, R. S. Dyavanal and R. V. Desai [2] extended the results of J. Zhang [17]

and proved the following results.

Theorem I. Let f(z) be a transcendental entire function of finite order, and «(z) be
a small function with respect to f(z). Suppose that ¢ is a non-zero complex constant
and n is an integer. If n > 2, k; > 1 then f™(2)(f(2) — D)F f(2 + ¢) — a(z) has

infinitely many zeros.

Theorem J. Let f(z) and g(z) be two transcendental entire functions of finite order,
and a(z) be a small function with respect to both f(z) and g(z). Suppose that ¢ is
a non-zero complex constant, k1 > 1,n > ki + 6. If f*(2)(f(2) — 1)* f(z + ¢) and
g (2)(g9(2) — DF1g(2 + ¢) share a(z) CM, then f(z) = tg(z), where tFt = 1.
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Recently, Renukadevi S. Dyavanal and Ashwini M. Hattikal [3] considered Theo-
rem C and Theorem D to difference-differential polynomials and extends the above

theorems as follows.

Theorem K. Let f be a transcendental entire function. n,k and m be positive
integers with n > k + 2 and P(2) = amz™ + am_12""1 + ... + a1z + ag, where
ag, a1,02,03, ..., Am—1, Gy are complex constants and a(z) be a small function with

respect to f(z). Then [f"P(f)f(z + ¢)]*) — a(z) has infinitely many zeros.

Theorem L. Let f and g be two non-constant entire functions of finite order.
Let n,k and m be three positive integers with n > m + 2k + 6,‘¢’ is a non-
zero complex constant and P(2) = @, 2™ + @pm_12™" 1 + ... + a1z +ag or P(z) =
co, where ag(# 0),a1,a9,a3, ..., am—1, am(# 0), co(# 0) are complex constants. If
[fM(2)P(f) f(z + )] and [¢"(2)P(g)g(z + ¢)]*) share 1 CM, then

(1) when P(2) = apz™ + am_12""1 + ... + a1z + ag, we get f(z) = tg(z) for a con-
stant ¢ such that t¢ = 1, where d = GCD(n+m+1,n4+m,...,n+m+1—i,..,n+1)
and i =0,1,2,....,m

(2) when P(z) = ¢, either f(z) = C}\;C_ g(z) = %, where ¢y, ca,c9 and C' are
constants satisfying (—1)¥(c1ea)"((n + 1)0)%* = ({/e0)?, or f = tg for a constant
t such that t"*! = 1.

In this paper, we assume ¢; € C\ {0}(j = 1,...,d) are distinct constants,
d
n,m,d,sj(j=1,..,d) € Ny. A=) 55 =51 + ... + 54. Let
j=1
(1.1) F(z) =

fz4¢)7, G(z) = 9(z +¢5)”

=
it
H'E&

Where P(z) = a;,2™ + apm_12™ "1 + ... + ag is a nonzero polynomial of degree m, let
T'p = my + mg, where my is the number of the simple zero of P(z) and mg is the

number of multiple zeros of P(z).

We consider the uniqueness problems of difference-differential polynomials F' (k) (2)

and obtained the following results, which improves the Theorems K and L.

Theorem 1.1. Let f be a transcendental meromorphic (resp. entire) function. n, k
and m be positive integers with n > k +3+Tg—m (resp. n > k+2+ Ty —m)

and P(2) = amz™ + am-12""" + ... + a1z + ag, where ag,a1,as,as, ..., Gm_1, am
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are complex constants and a(z) be a small function with respect to f(z). Then

[f"(z)P(f) ﬁ f(z+¢;)%]® — a(2) has infinitely many zeros.
j=1

Remark 1.1. If Tg = m = my + mg, A = 1 in Theorem 1.1, then Theorem 1.1

reduces to Theorem K.

Theorem 1.2. Let f and g be two non-constant entire functions of finite order.
F(z) and G(z) are stated as in (1.1). Suppose that n > 2k 4+ 2Tg+ A —m + 3. If
F®) and G*) share 1 CM, then
(1) when P(2) = apmz™ + am_12™"1 + ... + a1(2) + ag, either f = tg for a constant
t such that t! = 1, where | = GOD{n+ X\g+ A\, n+ A1 + A, ...,n+ A\, + A} and

i, a;#0

\i = ' i=0,1,..,m,
m, a;=20

or f and g satisfy the algebraic equation R(f, g) = 0, where

d d
R(wy, wg) = wf H (z+¢j)% —wy P H (z+c¢j)%
(2) when P(z) = ¢ either f(z) = 1:/2_02, g(z) = %, where c¢1, c2, ¢o and C are

constants satisfying (—1)*(c1e2)" ™ ((n+A)C)* = (/cg)**, or f = tg for a constant
t such that "4 = 1.

Remark 1.2. If I'o = m = m; +mo, A = 1 in Theorem 1.2, then Theorem 1.2

improves the Theorem L.

2. Some Lemmas
For the proof of our main results, we need the following lemmas.

Lemma 2.1 ([1]). Let f(z) be a transcendental meromorphic function of finite

order, then
T(r, f(z+¢)) =T(r. f) + S(r f).

Lemma 2.2 ([16]). Let f(z) be a non-constant meromorphic function, and a,(#

0), an—1, ..., ap be small functions with respect to f. Then

T(ryanf™ + an—1f" " 4 ... + a1 f +ao) = nT(r, f) + S(r, f).

95



96

H. P. Waghamore and R. Maligi

Lemma 2.3 ([6]). Let f be a transcendental meromorphic function of finite order.

Then

o 2550) 5o

Lemma 2.4 ([7, 14]). Let f(z) be a non-constant meromorphic function and
a1(z), az2(z) be two meromorphic functions such that T'(r,a;) = S(r, f), i = 1,2.

Then

T(r, ) < N(r. f) +N<r, f_1a1> —I—N(r,ﬁ) +5(r 1),

Lemma 2.5 ([16]). Let f(z) and g(z) be two transcendental entire functions, and

k be a positive integer. Then
T(r, f™) <T(r ) + kN(r, ) + S(r. ).

Lemma 2.6 ([[1], [5]]). Let f(z) be a meromorphic function of finite order and ¢ is

a non-zero complex constant. Then

" < f(ﬁg)@) o < f(fz(i)C)) R

Lemma 2.7 ([9], Lemma 2.3). Let f(z) be a non-constant meromorphic function

and p, k be positive integers. Then

(2.1) N, (r, %) <T(r, f®) = T(r, f) + Npss <7~, %) +S(r, f),

(2.2 N, ( ﬁ) < KN f) + Nps ( %) 50, f).

Lemma 2.8. Let f(z) be a transcendental entire function of finite order and let

d
F* = f()P(f) 11 £z + )" . Then

Jj=

T(r, F*) = (n+m+NT(r, f) + S(r, f).
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Proof. Since f is a transcendental entire function and also from Lemmas 2.2, 2.3

and 2.6, we obtain

(n+m+NT(r, f)+ S(r, f) =T(r, f*(2) <m(r, f"N2)P(f)) + S(r, )

z—l—c]

<m(r, F*)+ S(r, f)
<T(r, F*) + S(r f).
On the other hand, using Lemma 2.1 and f is a transcendental entire function of
finite order, we have
T(r,F*) <nT(r, f) +mT(r, f) + AT(r, f(z + ¢)) + S(r, f)

< (n+m+NT(r, f) + S(r, f).

Hence we get Lemma 2.8.

3. Proof of the Theorems
d

Proof of Theorem 1.1. Denote (F(2))®) = [f"(2)P(f) [] f(z + ¢;)*]%*) and
j=1
d
F = f"(2)P(f) [I f(#+ ¢;)%. From Lemma 2.8, F' is not a constant. Next, we
=1
consider the following two cases.
Case 1. If f is a transcendental meromorphic function. Suppose that F/(2)*) —a(z)

has only finitely many zeros, then from the second fundamental theorem for three

values and (2.1) of Lemma 2.7, we get

T(r, F®) <N(r, F®) + N(r,0, F®) + N(r,0, F¥ — a(2)) + S(r, FP))
< N(r, f) + Ni(r,0, FO) + N(r,0, F®) — a(2)) + S(r, F*¥))
<N, f) +T(r, F®) = T(r, F) + Njy1(r,0, F) + S(r, F) + S(r, F?)

(3.1)
T(r,F) < N(r, f) + Nig1(r, 0, F) 4+ S(r, f).
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From Lemma 2.8 and (3.1), it implies that

(n+m+NT(r, ) +8(r, f) = T(r, F) < Niya(r,0, F) + N(r, f) + S(r, f)

d

< (k+1)N(r,0,f) + N(r,0,P(f)) + N [ r,0, ] £(z+ ¢;)

j=1
+N(r, f) +S(r, f)
<(k+2+To+NT(r,f)+ S(r, f).

Which is a contradiction to n > k + 3 + g — m. Hence F(2)*) — a(2) has infinitely

many Zzeros.

Case 2. If f is a transcendental entire function. Suppose that F(z)*) — «(z) has

only finitely many zeros. By using the same argument as in case 1, we get
(n+m+NT(r f)<(k+1+To+NT(r,f)+S(r,f),

which is a contradiction to n > k + 2 + I'g — m. Hence F(2)®*) — a(z) has infinitely

many Zzeros.

Proof of Theorem 1.2.

(1) If P(2) = amz™ + am-12™" 4 ... + a1z + ap.

Then by assumption and Theorem 1.1 we know that either both f and g are tran-
scendental entire functions or both f and g are polynomials.

First, we consider the case when f and g are transcendental entire functions.

By Lemma 2.5, we have

T(r, F®) < T(r, f(2) flz4¢)%) +8(r, f*(z flz+¢)%)

”::1&
||:j&

By Lemma 2.8, we get S(r, F(k)) = S(r, f), similarly S(r, G(k)) = S(r,g).
Since f, g are two transcendental entire functions with finite order, F () and G

share 1 CM, there exists a nonzero constant ¢ such that

Fk) 1
Gk —1

=c.
Rewriting the above equation, we have

GW = F®) 14
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Assume that ¢ # 1. By the second fundamental theorem and Lemma 2.7, we get

— — 1 — 1
(k) (k) — - (k)
T(r,F\"")) < N(r,F )+N(T,F(k))—|—N<r,F(k)_1+c>—|—S(r,F )

— 1 — 1
S N (’I", m) +N ('f‘, W) + S(T,f)
1 — 1
< T(T’,F(k)) — T(T, F) + Nk+1 (7", F) + N (T‘, W) + S(T, )
1 1
< T F9) T F) £ N (o) + N (15 ) + 800) + ).
So

T, F) < Ny (1) + N (v g ) + 8+ 5(09).

By the definitions of F, G and Lemma 2.8, we have

(n+m+XN)T(r, f) < (k+14+To+N[T(r, f) +T(r,9)] + S(r, f) + S(r,9).
Similarly, we obtain

m+m4+NT(r,g) <(k+1+To+N[T(r,f)+T(r,9)] + S(r, f)+ S(r,g).
Therefore
m4+m4+N)[T(r, /)+T(r,g)] <2(k+14+To+N)[T(r, f)+T(r,g)]+S(r, )+ S(r,9),
which contradicts with the assumption that n > 2k + 2I'g + A — m + 3. Hence
Fk) = g,

By (F(2))®) = (G(2))®), we get F(z) = G(2) + Q(z), where Q(2) is a polynomial
of degree atmost k — 1. If Q(z) # 0, then

PP I fz+¢)%  g"(2)P(9)

)

g(z +¢;)%

) + 1.

d d
1 1
Jj=1 j=1

Q(z Q=

99
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By the second fundamental theorem and Lemma 2.8, we deduce that

Similarly, we obtain
(n+m+XNT(r,g) < (1+To+d)(T(r,f)+T(r,g)] + S(r, f) + S(r,9).

So

(n+m+XN[T(r, f) +T(r,g)] <201+ To +d)[T(r, f) + T(r,g)] + S(r, f) + 5(r, 9)-

Which contradicts with the assumption that n > 2k + 2I'g + A — m + 3. Hence
Q(z) = 0. Then

d d
(3-2) PPN T Gz + ) = g" (@) Plo) [T oz + )%

j=1 j=1
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Set h = 5. If h is not a constant, from (3.2), we find that f and g satisfy the algebraic
equation R(f, g) =0, where

d
R(wy, wy) = wi(z +¢j)% —wy Pw2H (z4¢5)%

H::]&

If h is a constant. Substituting f = gh into (3.2), we get
(3.3)
d

101

Hg(z+cj)sj [amgn+m(hn+m+)\_1)_|_am_1gn+m—l(hn+m+)\—1_1)+'.'+aogn(hn+)\_1)} =0,

where a(#£ 0), am—1, ...ap are constants.
d
Since g is transcendental entire function, we have [] g(z + ¢;)% # 0. Then, from
j=1
(3.3), we have

(3.4) amgn+m(hn+m+)\71)_~_amilgn+m—1<hn+m+)\—l71)+'.'+aogn(hn+)\71) =0.

If @ (# 0) and am—1 = am—2 = ... = ag = 0, then from (3.4) and ¢ is transcen-
dental function, we get Rt = 1.

If @y, (# 0) and there exists a; # 0 (i € {0,1,2,...,m—1}). Suppose that A" 7"+ £
1, from (3.4), we have T'(r,g) = S(r,g) which is contradiction with transcendental
function g. Then A"T™+* = 1. Similar to this discussion, we can see that h"T7TA =1
when a; # 0 for some j =0,1,2,...,m

Thus, we have f = tg for a constant ¢ such that #! = 1, where | = GCD{n + \¢ +
An+AM+A . ,n+ Ay +Aand A\ (1 =0,1,2,...,m) is stated as in Theorem 1.2.
Now we consider the case when f and g are two polynomials.
By [GP() 1T 1z + )91 and [g7(2)P(o) [T gl + )] share 1 M, we
have = =

(3.5)

d d
[F"(2)(am f ™ +...4a0) H (2+¢;)) W —1 = B[g"(2)(amg™+..+ao) H 2+¢))

where 3 is a non-zero constant. Let deg f = [, then by (3.5) we know that deg g = .
Differentiating the two sides of (3.5), we get

(3.6) AR a(z) = 9" () a2 (2),
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where ¢1(2), g2(2) are two polynomials with deg q1(2) = deg g2(2) = (m+k +2X\)l —
(k+1). By n > 2k+2Tg+A—m+3, we get deg " F2(2) = (n—k =)l > deg q2(2).
Thus, by (3.6) we know that there exists zg such that f(z9) = g(z0) = 0.
Hence, by (3.5) and f(z0) = g(z0) = 0, we deduce that 8 = 1, that is,
(3.7)
d d
() (@™ + .+ a0) [ £z +¢)5)®) = [67(2) (@mg™ + .+ a0) [ ] g +¢5))®
j=1 j=1
Thus, we have

(3.8)

d d
() (amf™+ ...+ ap) H z24¢j)% —g"(2)(amg™ + ...+ ap) H 9(z+¢j)% = Q(z)

where Q(z) is a polynomial of degree atmost k — 1. Next we prove Q(z) = 0. By
rewriting (3.7) as

(3.9) @) pi(z) = 6" (=) pa(2).

Where p1(2), p2(z) are two polynomials with deg p1(2) = degp2(2) = (m+k+ )k
and deg f(z) = L.

Hence total number of common zeros of f*~*(z) and ¢g"~%(z) is atleast k. Thus, by
(3.8) we deduce that Q(z) = 0, that is

(3.10)

d d
FU2) (amf" a1 ™ Hag) H (z+4¢))% = g"(2)(amg™+am-19™ *...4+ap) H (z4¢;)*

Next, similar to the argument of (3.2), we get f(z) = tg(z) for a constant ¢ such that
th =1, where | = GCD{n+X g+ A\, n+ 1+ X, ....n+ A+ A} and \; (i = 0,1,2,...,m)

is stated as in Theorem 1.2.

(2) If P(2) =

By the assumption and Theorem 1.1, we know that either both f and g are tran-
scendental entire functions or both f and g are polynomials.

First, we consider the case when both f and g are transcendental entire functions.

Let

d d
F=f"(2)c [[ Fz+¢)%, G=g"(2)eo [] 9z + ¢j)
j=

=1
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By the Theorem F and n > 2k+2T"g+A—m-+3, we obtain either f(z) = cre® g(z) =

n CO b
0267c
/co

(/co)*, or f = tg for a constant t such that t"+* = 1.

=, where ¢1, ¢a, ¢g and C are constants satisfying (—1)*(c1eo)" T ((n+A)C)2F =

Now we COI’lbldeT the case when both f and g are two polynomials.

By [f™(2)co H f(z+¢;)*]%® and [¢g"(2)co H g(z + ¢;)%]®) share 1 CM, we have
j=1

d d
(311 [f"(@)eo [Tz +¢)]W =1 =7 |[g"(z)e0 [T 9z + ;) ]W —1

j=1 j=1
Where v is a non-zero constant. Let deg f(z) = [, then by (3.11) we know that
deg g(z) = l. Differentiating the two sides of (3.11), we get

(3.12) M=) g3(2) = ¢ 2) ()

where ¢3(z), q4(z) are two polynomials with deg g3(z) = deg q4(z) = (k+2\)l — (k+
1). By n > 2k + 4, we get deg f**2) = (n — k — \)l > deg qu(2).

Thus, by (3.12) we know that there exists zg such that f(z¢) = g(z29) = 0.

Hence, by (3.11) and f(z9) = g(20) = 0, we deduce that v = 1, that is,

(3.13) [f"(z COHfZ—I—CJ 53)(k) — COng—i—cJ

7j=1

Thus, we have

d
flz+¢)% —g"(2) H 9(z +¢j)¥ = Q1(2)

=1

(3.14)

S
S—

.

Il <9

—

where Q1(z) is a polynomial of degree atmost k£ — 1. Next we prove Q1(z) = 0. By
rewriting (3.13) as

(3.15) @) ps(2) = 9" () pa(2)

where p3(2), p4(z) are two polynomials with deg p3(z) = degpa(z) = (kK + M)l — k
and deg f(z) =1

Hence total number of common zeros of f"~%(2) and ¢"*(2) is atleast k.

Thus, by (3.14) we deduce that Q1(z) = 0, that is,

d d
(3.16) PO G+ ) =g" (@) [] oz + )
=1

Jj=1
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Let h(z) = 1) and h(z+c) = 57(%3 then

g(z

(gh)"ﬁg(z—i—cj) S h(z 4 ¢;)™ ﬁ (z+¢5)%
Jj=1 j=1
d
Hence f = tg where (t9)" [1 t(z-+ ¢;)9(z +¢,)" = g Jng<z + c5)%
= A =1,
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